Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 352
Filtrar
1.
Int J Biol Macromol ; 260(Pt 2): 129362, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38272408

RESUMO

The incorporation of a non-specific lipase and a sn-1,3 specific one in a single immobilized system can be a promising approach for the exploitation of both lipases. A one-step immobilization platform mediated by an isocyanide-based multi-component reaction was applied to create co-cross-linked enzymes (co-CLEs) of lipases from Rhizomucor miehei (sn-1,3 specific) and Candida antarctica (non-specific). Glutaraldehyde was found to be effective cross-linker by producing specific activity of 16.9 U/mg and immobilization yield of 99 %. High activity recovery of up to 404 % was obtained for immobilized derivatives. Leaking experiment showed covalent nature of the cross-linking processes. BSA had considerable effect on the immobilization process, providing 87-100 % immobilization yields and up to 10 times improvement in the specific activity of the immobilized derivatives. Scanning electron microscopy images showed flower-like and rod-like structures for the CLEs prepared by glutaraldehyde and undecanedicarboxylic acid, respectively. The prepared co-CLEs were examined in non-selective enrichment of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) from fish oil, showing capability of releasing up to 100 % of both omega-3 fatty acids within 8 h of the reaction. The reusability of co-CLEs in five successive cycles presented retaining 63-72 % of their initial activities after the fifth reuse cycle in the hydrolysis reaction.


Assuntos
Ácidos Graxos Ômega-3 , Proteínas Fúngicas , Ácidos Graxos Ômega-3/química , Óleos de Peixe/química , Glutaral , Enzimas Imobilizadas/química , Lipase/química , Rhizomucor
2.
Food Chem Toxicol ; 179: 113972, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37532172

RESUMO

To address the growing world population and reduce the impact of environmental changes on the global food supply, ingredients are being produced using microorganisms to yield sustainable and innovative products. Food ingredients manufactured using modern biotechnology must be produced by non-toxigenic and nonpathogenic production organisms that do not harbor antimicrobial resistance (AMR). Several fungal species represent attractive targets as sources of alternative food products. One such product is a fungal biomass obtained from the fermentation of Rhizomucor pusillus strain CBS 143028. The whole genome sequence of this strain was annotated and subjected to sequence homology searches and in silico phenotype prediction tools to identify genetic elements encoding for protein toxins active via oral consumption, virulence factors associated with pathogenicity, and determinants of AMR. The in silico investigation revealed no genetic elements sharing significant sequence homology with putative virulence factors, protein toxins, or AMR determinants, including the absence of mucoricin, an essential toxin in the pathogenesis of mucormycosis. These in silico findings were corroborated in vitro based on the absence of clinically relevant mycotoxin or antibacterial secondary metabolites. Consequently, it is unlikely that R. pusillis strain CBS 143028 would pose a safety concern for use in food for human consumption.


Assuntos
Ingredientes de Alimentos , Humanos , Biomassa , Rhizomucor/genética
3.
Appl Environ Microbiol ; 89(3): e0217222, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36912632

RESUMO

Cavities are created by hydrophobic interactions between residue side chain atoms during the folding of enzymes. Redesigning cavities can improve the thermostability and catalytic activity of the enzyme; however, the synergistic effect of cavities remains unclear. In this study, Rhizomucor miehei lipase (RML) was used as a model to explore volume fluctuation and spatial distribution changes of the internal cavities, which could reveal the roles of internal cavities in the thermostability and catalytic activity. We present an inside out cavity engineering (CE) strategy based on computational techniques to explore how changes in the volumes and spatial distribution of cavities affect the thermostability and catalytic activity of the enzyme. We obtained 12 single-point mutants, among which the melting temperatures (Tm) of 8 mutants showed an increase of more than 2°C. Sixteen multipoint mutations were further designed by spatial distribution rearrangement of internal cavities. The Tm of the most stable triple variant, with mutations including T21V (a change of T to V at position 21), S27A, and T198L (T21V/S27A/T198L), was elevated by 11.0°C, together with a 28.7-fold increase in the half-life at 65°C and a specific activity increase of 9.9-fold (up to 5,828 U mg-1), one of the highest lipase activities reported. The possible mechanism of decreased volumes and spatial rearrangement of the internal cavities improved the stability of the enzyme, optimizing the outer substrate tunnel to improve the catalytic efficiency. Overall, the inside out computational redesign of cavities method could help to deeply understand the effect of cavities on enzymatic stability and activity, which would be beneficial for protein engineering efforts to optimize natural enzymes. IMPORTANCE In the present study, R. miehei lipase, which is widely used in various industries, provides an opportunity to explore the effects of internal cavities on the thermostability and catalytic activity of enzymes. Here, we execute high hydrostatic pressure molecular dynamics (HP-MD) simulations to screen the critical internal cavity and reshape the internal cavities through site-directed mutation. We show that as the global internal cavity volume decreases, cavity rearrangement can improve the stability of the protein while optimizing the substrate channel to improve the catalytic efficiency. Our results provide significant insights into understanding the mechanism of action of the internal cavity. Our strategy is expected to be applied to other enzymes to promote increases in thermostability and catalytic activity.


Assuntos
Enzimas Imobilizadas , Lipase , Lipase/metabolismo , Estabilidade Enzimática , Temperatura , Enzimas Imobilizadas/metabolismo , Rhizomucor
4.
Int J Mol Sci ; 23(13)2022 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35806072

RESUMO

One of the indispensable applications of lipases in modification of oils and fats is the possibility to tailor the fatty acid content of triacylglycerols (TAGs), to meet specific requirements from various applications in food, nutrition, and cosmetic industries. Oleic acid (C18:1) and stearic acid (C18:0) are two common long fatty acids in the side chain of triglycerides in plant fats and oils that have similar chemical composition and structures, except for an unsaturated bond between C9 and C10 in oleic acid. Two lipases from Rhizomucor miehei (RML) and Rhizopus oryzae (ROL), show activity in reactions involving oleate and stearate, and share high sequence and structural identity. In this research, the preference for one of these two similar fatty acid side chains was investigated for the two lipases and was related to the respective enzyme structure. From transesterification reactions with 1:1 (molar ratio) mixed ethyl stearate (ES) and ethyl oleate (EO), both RML and ROL showed a higher activity towards EO than ES, but RML showed around 10% higher preference for ES compared with ROL. In silico results showed that stearate has a less stable interaction with the substrate binding crevice in both RML and ROL and higher tendency to freely move out of the substrate binding region, compared with oleate whose structure is more rigid due to the existence of the double bond. However, Trp88 from RML which is an Ala at the identical position in ROL shows a significant stabilization effect in the substrate interaction in RML, especially with stearate as a ligand.


Assuntos
Proteínas Fúngicas , Lipase , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Lipase/química , Lipase/genética , Simulação de Acoplamento Molecular , Ácidos Oleicos , Rhizomucor/enzimologia , Rhizopus oryzae/enzimologia , Análise de Sequência de Proteína , Estearatos , Relação Estrutura-Atividade , Especificidade por Substrato
5.
Enzyme Microb Technol ; 160: 110072, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35689964

RESUMO

The construction of methanol-resistant lipases with high catalytic activity is world-shattering for biodiesel production. A semi-rational method has been constructed to enhance the properties of Rhizomucor miehei lipase with propeptide (ProRML) by introducing N-glycosylation sites in the Loop structure. The enzyme activities of the mutants N288 (1448.89 ± 68.64 U/mg) and N142 (1073.68 ± 33.87 U/mg) increased to 56.09 and 41.56 times relative to that of wild type ProRML (WT, 25.83 ± 0.73 U/mg), respectively. After incubation in 50 % methanol for 2.5 h, the residual activities of N314 and N174-1 were 95 % and 85%, which were higher than the WT (27 %). Additionally, the biodiesel yield of all mutants was increased after a one-time addition of methanol for 24 h. Among them, N288 increased the quantity of biodiesel from colza oil from 9.49 % to 88 %, and N314 increased the amount of biodiesel from waste soybean oil from 8.44% to 70%. This study provides an effective method to enhance the properties of lipase and improve its application potential in biodiesel production.


Assuntos
Biocombustíveis , Lipase , Glicosilação , Lipase/metabolismo , Metanol/química , Rhizomucor/genética
6.
Int J Mol Sci ; 23(12)2022 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-35743268

RESUMO

The behavior against temperature and thermal stability of enzymes is a topic of importance for industrial biocatalysis. This study focuses on the kinetics and thermodynamics of the thermal inactivation of Lipase PS from B. cepacia and Palatase from R. miehei. Thermal inactivation was investigated using eight inactivation models at a temperature range of 40-70 °C. Kinetic modeling showed that the first-order model and Weibull distribution were the best equations to describe the residual activity of Lipase PS and Palatase, respectively. The results obtained from the kinetic parameters, decimal reduction time (D and tR), and temperature required (z and z') indicated a higher thermal stability of Lipase PS compared to Palatase. The activation energy values (Ea) also indicated that higher energy was required to denature bacterial (34.8 kJ mol-1) than fungal (23.3 kJ mol-1) lipase. The thermodynamic inactivation parameters, Gibbs free energy (ΔG#), entropy (ΔS#), and enthalpy (ΔH#) were also determined. The results showed a ΔG# for Palatase (86.0-92.1 kJ mol-1) lower than for Lipase PS (98.6-104.9 kJ mol-1), and a negative entropic and positive enthalpic contribution for both lipases. A comparative molecular dynamics simulation and structural analysis at 40 °C and 70 °C were also performed.


Assuntos
Burkholderia cepacia , Estabilidade Enzimática , Cinética , Lipase/metabolismo , Simulação de Dinâmica Molecular , Rhizomucor , Temperatura , Termodinâmica
7.
Food Chem ; 390: 133171, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35551020

RESUMO

Nowadays, breast milk is considered as the ideal food for infants owing to the most common oleic acid-palmitic acid-oleic acid (OA-PA-OA) fatty acid distribution of the human milk fat (HMF). This study reports the synthesis of 1,3-dioleoyl-2-palmotoylglycerol (OPO)-rich human milk fat substitutes in a two-step enzymatic acidolysis reaction with Rhizomucor miehei lipase (RML) immobilized on magnetic multi-walled carbon nanotubes(mMWCNTs). The immobilized RML (RML-mMWCNTs) showed better thermal and pH stability, convenient recovery and reusability than the free soluble form. Under optimized reaction conditions (1:8 tripalmitin (PPP)/OA, 10%wt. enzyme, 50 °C, 5 h), PA content at the sn-2 position and OA incorporation at the sn-1,3 positions reached 93.46% and 59.54%, respectively. Comparison tests have also showed that RML-mMWCNTs has better catalytic activity and reusability than the commercial lipase Lipozyme RM IM. The results suggest that RML-mMWCNTs is a promising biocatalyst for the synthesis of OPO-rich TAGs with potential use in infant formulas.


Assuntos
Nanotubos de Carbono , Ácido Palmítico , Feminino , Humanos , Lactente , Fórmulas Infantis/química , Lipase/metabolismo , Fenômenos Magnéticos , Leite Humano/química , Ácido Oleico/análise , Ácido Palmítico/análise , Rhizomucor , Triglicerídeos/química
8.
Biomed Res Int ; 2022: 5904261, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35463967

RESUMO

The manuscript mainly aimed at providing clues on improving the innate immunity of coronavirus patients and safeguarding them from both new mutant strains and black fungus infections. Coronavirus is readily mutating from one variant to another. Among the several variants, we selected SARS-CoV-2 B.1.1.7 in this study. Upon infection of any virus, ideally, the phagocytic cells of the host engulf and destroy the virus by a mechanism called phagocytosis. However, compromised immunity impairs phagocytosis, and thus, restoring the immune system is crucial for a speedy recovery of infected patients. The autophagy and activation of Toll-like receptor-4 are the only ways to restore innate immunity. Recently, immunocompromised COVID-19 patients have been suffering from the coinfection of black fungus. Rhizomucor, a black fungus species, causes more than 75% of cases of mucormycosis. Here, we present the results of molecular docking studies of sixty approved antiviral drugs targeting receptors associated with the SARS-CoV-2 B 1.1.7 variant (PDB id: 7NEH), activating the innate immune system (PDB id: 5YEC and 5IJC). We also studied the twenty approved antifungal drugs with Rhizomucor miehei lipase propeptide (PDB id: 6QPR) to identify the possible combination therapy for patients coinfected with coronavirus and black fungus. The ledipasvir showed excellent docking interactions with the 7NEH, 5YEC, and 5IJC, indicating that it is a perfect candidate for the treatment of COVID-19 patients. Itraconazole showed significant interaction with 6QPR of Rhizomucor miehei, suggesting that itraconazole can treat black fungus infections. In conclusion, the combination therapy of ledipasvir and itraconazole can be a better alternative for treating COVID-19 patients coinfected with black fungus.


Assuntos
Tratamento Farmacológico da COVID-19 , Coinfecção , Benzimidazóis , Coinfecção/tratamento farmacológico , Fluorenos , Humanos , Itraconazol/uso terapêutico , Simulação de Acoplamento Molecular , Rhizomucor , SARS-CoV-2
9.
Protein Pept Lett ; 29(4): 360-369, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35289250

RESUMO

BACKGROUND: A series of mutants of Rhizomucor miehei lipase (RML) screened through four rounds of directed evolution were studied. Mutants' triglyceride hydrolysis activity was assessed, and their genes were sequenced. Results showed that mutations in the propeptide can improve the activity of RML during evolution. Two parts of propeptide (wild-type and mutant) and mature region were connected by molecular simulation technology. METHODS: The spatial structure of the most positive mutants containing the mutations in the propeptide was mainly characterized by the increase in the opening angle of the lid structure in the mature region of RML, the enhancement of the hydrophobicity of the active center, and the triad of the active center shifted outward. RESULTS: The three indexes above explain the mechanism of propeptide mutations on the activity change of the target protein. In addition, statistical analysis of all the mutants screened in directed evolution showed that: (1) most of the mutants with increased activity contained mutations of the propeptide, (2) in the later stage of directed evolution, the number of active mutants decreased gradually, and the mutations of inactivated protein mainly occurred in the mature region, and (3) in the last round of directed evolution, the mutations distributed in the propeptide improved the mutant activity further. The results showed that the propeptide reduced RML's evolutionary pressure and delayed the emergence of the evolutionary platform. CONCLUSION: These findings reveal the role of propeptide in the evolution of RML and provide strategies for the molecular transformation of other lipases.


Assuntos
Lipase , Rhizomucor , Hidrólise , Lipase/química , Mutação , Rhizomucor/genética , Rhizomucor/metabolismo
10.
Int J Biol Macromol ; 204: 718-724, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35134452

RESUMO

This research aimed to invent a new method for cheese making using Rennin-like enzyme from fungus with high efficiency and reusability. Accordingly, Rhizomucor miehei (CBS: 370.65) showed a promising milk clotting (MCF) activity and the mycotoxin test was negative. The partially purified enzyme was immobilized by entrapment in paraffin wax using different techniques. Wax-enzyme tablets preparation exhibited complete immobilization yield (100%). Ca2+ had a marked stimulating effect on the activities of both the free and immobilized enzyme forms. The immobilized enzyme (MCI) exhibited more than sixteen effective reuses to produce cheese in a batch reactor. The free and the immobilized forms recorded their optimum activities at pH 5.6 and 55 °C, respectively. The immobilization process reduced the consumed activation energy (Ea) to 39%. The immobilized enzyme was more stable than the free form. Among all the used substrates, buffalo milk and full cream milk showed the highest immobilized enzyme activity (7142.9 U). km value was unaffected by the immobilization process and was 600 mg reaction-1, for both. Schematic setup was used as semi-pilot example for a repeated batch of MCI wax tablets. This design solved the clotting problem completely by the refine bundle nominated its agreeability in the cheese-making process.


Assuntos
Queijo , Quimosina , Enzimas Imobilizadas/química , Parafina , Renina , Rhizomucor
12.
Bioresour Technol ; 348: 126769, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35092821

RESUMO

Exploiting highly active and methanol-resistant lipase is of great significance for biodiesel production. A semi-rational directed evolution method combined with N-glycosylation is reported, and all mutants exhibiting higher catalytic activity and methanol tolerance than the wild type (WT). Mutant N267 retained 64% activity after incubation in 50% methanol for 8 h, which was 48% greater than that of WT. The catalytic activity of mutants N267 and N167 was 30- and 71- fold higher than that of WT. Molecular dynamics simulations of N267 showed that the formation of new strong hydrogen bonds between glycan and the protein stabilized the structure of lipase and improved its methanol tolerance. N267 achieved biodiesel yields of 99.33% (colza oil) and 81.70% (waste soybean oil) for 24 h, which was much higher than WT (51.6% for rapeseed oil and 44.73% for wasted soybean oil). The engineered ProRML mutant has high potential for commercial biodiesel production.


Assuntos
Biocombustíveis , Lipase , Lipase/metabolismo , Metanol/química , Rhizomucor/metabolismo
13.
J Infect Chemother ; 28(3): 459-464, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34955408

RESUMO

Disseminated Rhizomucor pusillus infection is a very rare but fatal complication in immunocompromised patients, because of aggressive clinical process with delayed diagnosis by routine laboratory tests. Recently, cell-free DNA next-generation sequencing (cfDNA NGS) has been used for the timely detection of infectious pathogens including mucormycosis. Herein, we described an 18-year-old male with Philadelphia-like acute lymphoblastic leukemia who received a timely diagnosis of R. pusillus infection by cell-free DNA next-generation sequencing, and confirmed by silver staining and qPCR on biopsy tissue. To the best of our knowledge, this was the first case of disseminated R. pusillus infection detected by cfDNA NGS and confirmed by histology in an adult leukemia patient. In addition, this case was supposed to be the most extensive R. pusillus infection diagnosed, involving the lung, skin, liver, kidney, spleen and brain, and the only one case who survived the infection had a favorable outcome through treatment with liposome amphotericin B sequential posaconazole. This case suggested that cfDNA NGS could be used to successfully detect rare pathogen infections, and this was especially important for R. pusillus because timely diagnosis and effective treatment could improve the prognosis of this kind of patient.


Assuntos
Ácidos Nucleicos Livres , Mucormicose , Leucemia-Linfoma Linfoblástico de Células Precursoras , Adolescente , Adulto , Antifúngicos/uso terapêutico , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Mucormicose/diagnóstico , Mucormicose/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/complicações , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Rhizomucor
14.
Enzyme Microb Technol ; 153: 109948, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34801773

RESUMO

ß-1,3-Glucan constitutes a prominent cell wall component being responsible for rigidity and strength of the cell wall structure in filamentous fungi. Glycoside hydrolase (GH) family 81 endo-ß-1,3-glucanases which can cleave the long chain of ß-1,3-glucans play a major role in fungal cell wall remodeling. Here, we reported the complex structures of a fungal GH family 81 endo-ß-1,3-glucanase from Rhizomucor miehei (RmLam81A), revealing the triple-helical ß-glucan recognition and hydrolysis patterns. In the crystals, three structured oligosaccharide ligands simultaneously interact with one enzyme molecular via seven glucose residues, and the spatial arrangement of ligands to RmLam81A was almost identical to that of ß-1,3-glucan triple-helical structure. RmLam81A performed an inverting catalysis mechanism with Asp475 and Glu557 severing as the general acid and base catalyst, respectively. Furthermore, two hydrophobic patches involving Tyr93, Tyr106, Ile108, Phe619 and Tyr628 alongside the ligand-binding site possibly formed parts of the binding site. A ligand-binding motif, ß31-ß32, consisting of two key residues (Lys622 and Asp624), involved the recognition of a triple-helical ß-glucan. Our results provided a structural basis for the unique ß-1,3-glucan recognition pattern and catalytic mechanism of fungal GH family 81 endo-ß-1,3-glucanases, which may be helpful in further understanding the diverse physiological functions of ß-1,3-glucanases.


Assuntos
Glicosídeo Hidrolases , Rhizomucor/enzimologia , Catálise , Glicosídeo Hidrolases/química
15.
Sheng Wu Gong Cheng Xue Bao ; 37(9): 3242-3252, 2021 Sep 25.
Artigo em Chinês | MEDLINE | ID: mdl-34622632

RESUMO

L-asparaginase hydrolyzes L-asparagine to produce L-aspartic acid and ammonia. It is widely distributed in microorganisms, plants and serum of some rodents, and has important applications in the pharmaceutical and food industries. However, the poor thermal stability, low catalytic efficiency and low yield hampered the further application of L-asparaginase. In this paper, rational design and 5' untranslated region (5'UTR) design strategies were used to increase the specific enzyme activity and protein expression of L-asparaginase derived from Rhizomucor miehei (RmAsnase). The results showed that among the six mutants constructed through homology modeling combined with sequence alignment, the specific enzyme activity of the mutant A344E was 1.5 times higher than the wild type. Subsequently, a food-safe strain Bacillus subtilis 168/pMA5-A344E was constructed, and the UTR strategy was used for the construction of recombinant strain B. subtilis 168/pMA5 UTR-A344E. The enzyme activity of B. subtilis 168/pMA5 UTR-A344E was 7.2 times higher than that of B. subtilis 168/pMA5-A344E. The recombinant strain B. subtilis 168/pMA5 UTR-A344E was scaled up in 5 L fermenter, and the final yield of L-asparaginase was 489.1 U/mL, showing great potential for industrial application.


Assuntos
Asparaginase , Rhizomucor , Asparaginase/biossíntese , Asparaginase/genética , Bacillus subtilis/genética , Microbiologia Industrial , Engenharia de Proteínas , Rhizomucor/enzimologia , Alinhamento de Sequência
16.
An Acad Bras Cienc ; 93(suppl 4): e20210714, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34706012

RESUMO

Thermophilic fungi constitute an ecologically well-defined group, commonly found in environments wherever decomposition of organic matter takes place, making them self-heating. The importance of thermophilic fungus in ecosystems contrasts with the incompleteness of our understanding of the group's biogeography patterns, phylogenies and coevolution relationships. Actually, the lack of data about thermophilic fungi from the Brazil is a limiting factor that also contributes for this scenario. In order to reduce this gap of knowledge, we aimed to characterize thermophilic filamentous fungi in Araucaria Forest, Atlantic Forest biome. Species identification was achieved by using internal transcribed spacers (ITS) as molecular ribosomal markers. In total, 240 heat-tolerant fungal strains were isolated and identified as Thermothielavioides terrestris, Thielavia sp., Thermoascus crustaceus, Aspergillus fumigatus, Rhizomucor miehei, Rhizomucor pusillus, and Rhizopus microsporus. All thermophilic strains exhibited optimal growth at 45 °C. T. crustaceus, T. miehei e R. pusillus were the dominant species, with the frequencies of occurrence of 35.00%, 28.33% and 23.33%, respectively. Our data reveals the apparent diversity of the Neotropical realm and may serve as reference to future studies that will try to elucidate important aspects of group.


Assuntos
Araucaria , Ecossistema , Brasil , Eurotiales , Florestas , Fungos/genética , Rhizomucor , Rhizopus , Sordariales
17.
Enzyme Microb Technol ; 150: 109870, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34489029

RESUMO

The propeptide is a short sequence that facilitates protein folding. In this study, four highly active Rhizomucor miehei lipase (RML) mutants were obtained through saturation mutagenesis at three propeptide positions: Ser8, Pro35, and Pro47. The enzyme activities of mutants P35 N, P47 G, P47 N, and S8E/P35S/P47A observed at 40 °C, and pH 8.0 were 10.19, 7.53, 6.15, and 8.24 times of that wild-type RML, respectively. The S8E/P35S/P47A mutant showed good thermostability. After incubation at 40 °C for 1 h, 98.98 % of its initial activity remained, whereas wild-type RML retained only 78.76 %. This result indicated that the enhancement of hydrophilicity of 35- and 47- amino-acid residues could promote the interaction between the propeptide and the mature peptide and the enzyme activity and expression level. Highly conserved sites had a more significant impact on enzyme performance than did other sites, similar to the Pro35 and Pro47 mutants showed in this study. This study provides a new idea for protein modification: enzyme performance can be improved through propeptide regulation.


Assuntos
Lipase , Rhizomucor , Lipase/genética , Lipase/metabolismo , Mutação , Dobramento de Proteína , Rhizomucor/genética
18.
Int J Biol Macromol ; 190: 845-852, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34520781

RESUMO

The xyloglucanase gene (RmXEG12A) from Rhizomucor miehei CAU432 was successfully expressed in Pichia pastoris. The highest xyloglucanase activity of 25,700 U mL-1 was secreted using high cell density fermentation. RmXEG12A was optimally active at pH 7.0 and 65 °C, respectively. The xyloglucanase exhibited the highest specific activity towards xyloglucan (7915.5 U mg-1). RmXEG12A was subjected to hydrolyze tamarind powder to produce xyloglucan oligosaccharides with the degree of polymerization (DP) 7-9. The hydrolysis ratio of xyloglucan in tamarind powder was 89.8%. Moreover, xyloglucan oligosaccharides (2.0%, w/w) improved the water holding capacity (WHC) of yoghurt by 1.1-fold and promoted the growth of Lactobacillus bulgaricus and Streptococcus thermophiles by 2.3 and 1.6-fold, respectively. Therefore, a suitable xyloglucanase for tamarind powder hydrolysis was expressed in P. pastoris at high level and xyloglucan oligosaccharides improved the quality of yoghurt.


Assuntos
Glucanos/biossíntese , Glicosídeo Hidrolases/metabolismo , Oligossacarídeos/biossíntese , Rhizomucor/enzimologia , Saccharomycetales/metabolismo , Xilanos/biossíntese , Iogurte , Estabilidade Enzimática , Glucanos/isolamento & purificação , Glicosídeo Hidrolases/isolamento & purificação , Concentração de Íons de Hidrogênio , Hidrólise , Lactobacillus delbrueckii/crescimento & desenvolvimento , Peso Molecular , Oligossacarídeos/isolamento & purificação , Streptococcus/crescimento & desenvolvimento , Tamarindus/química , Temperatura , Fatores de Tempo , Xilanos/isolamento & purificação
19.
Biochim Biophys Acta Proteins Proteom ; 1869(11): 140709, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34358705

RESUMO

A chitinase gene (RmChiA) encoding 445 amino acid (aa) residues from a fungus Rhizomucor miehei was cloned and overexpressed in Escherichia coli. Two kinds of RmChiA crystal forms, with space groups P32 2 1 and P1, were obtained by sitting-drop vapor diffusion and the structures were determined by X-ray diffraction. The overall structure of RmChiA monomer, which is the first structure of bacterial-type chitinases from nonpathogenic fungi, adopts a canonical triosephosphate isomerase (TIM) barrel fold with two protruding chitinase insertion domains. RmChiA exhibited a unique NxDxE catalytical motif and a real active site tunnel structure, which are firstly found in GH family 18 chitinases. The motif had high structural homolog with the typical DxDxE motif in other GH family 18 chitinases. The tunnel is formed by two unusual long loops, containing 15 aa and 45 aa respectively, linked by a disulfide bond across the substrate-binding cleft. Mutation experiments found that opening the roof of tunnel structure increased the hydrolysis efficiency of RmChiA, but the thermostability of the mutants decreased. Moreover, the tunnel structure endowed RmChiA with the exo-chitinase character.


Assuntos
Domínio Catalítico , Quitinases/química , Proteínas Fúngicas/química , Rhizomucor/enzimologia , Quitinases/genética , Quitinases/metabolismo , Estabilidade Enzimática , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Hidrólise , Mutação
20.
Int J Biol Macromol ; 189: 734-743, 2021 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-34455007

RESUMO

This work aimed the application of a new biocatalyst for biodiesel production from residual agro-industrial fatty acids. A recombinant Pichia pastoris displaying lipase from Rhizomucor miehei (RML) on the cell surface, using the PIR-1 anchor system, were prepared using glycerol as the carbon source. The biocatalyst, named RML-PIR1 showed optimum temperature of 45 °C (74.0 U/L). The stability tests resulted in t1/2 of 3.49 and 2.15 h at 40 and 45 °C, respectively. RML-PIR1 was applied in esterification reactions using industrial co-products as substrates, palm fatty acid distillate (PFAD) and soybean fatty acid distillate (SFAD). The highest productivity was observed for SFAD after 48 h presenting 79.1% of conversion using only 10% of biocatalyst and free-solvent system. This is about ca. eight times higher than commercial free RML in the same conditions. The stabilizing agents study revealed that the treatment using glutaraldehyde (GA) and poly(ethylene glycol) (PEG) enabled increased stability and reuse of biocatalyst. It was observed by SEM analysis that the treatment modified the cell morphology. RML-PIR1-GA presented 87.9% of the initial activity after 6 reuses, whilst the activity of unmodified RML-PIR decreased by 40% after the first use. These results were superior to those obtained in the literature, making this new biocatalyst promising for biotechnological applications, such as the production of biofuels on a large scale.


Assuntos
Agricultura , Biocombustíveis/microbiologia , Resíduos Industriais , Lipase/metabolismo , Rhizomucor/enzimologia , Saccharomycetales/metabolismo , Biocatálise , Esterificação , Especificidade por Substrato , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...